

Autonomous College Permanently Affiliated to VTU, Approved by AICTE & UGC Accredited by NAAC with 'A' Grade, Accredited by NBA

The Trust is a Recipient of Prestigious Rajyotsava State Award 2012 Conferred by the Government of Karnataka Awarded Outstanding Technical Education Institute in Karnataka-2016 Ring Road, Bellandur Post, Near Marathalli, Bangalore -560 103, INDIA



# **Department of Computer Science and Engineering**

Academic Year 2020-21

Seventh and Eight Semesters B.E.

Scheme and Syllabus

2017-2021 Batch



## CONTENTS

| <b>1.</b> Vision, Mission and Pro | 1. Vision, Mission and Program Educational Objectives (PEO) |       |  |  |  |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------|-------|--|--|--|--|--|--|--|
| 2. Program Outcomes (PO)          | 2. Program Outcomes (PO) with Graduate Attributes           |       |  |  |  |  |  |  |  |
| <b>3.</b> Mapping of POs with PE  | eOs                                                         | 5     |  |  |  |  |  |  |  |
|                                   | SCHEME                                                      |       |  |  |  |  |  |  |  |
| 4. Scheme of Seventh Sem          | ester B.E                                                   | 6     |  |  |  |  |  |  |  |
| 5. Scheme of Eighth Semes         | ster B.E                                                    | 7     |  |  |  |  |  |  |  |
|                                   | SYLLABUS                                                    |       |  |  |  |  |  |  |  |
| 6. Syllabus of Seventh Sem        | nester BE:                                                  |       |  |  |  |  |  |  |  |
| a. Web Technologies               |                                                             |       |  |  |  |  |  |  |  |
| b. Software Testing               |                                                             |       |  |  |  |  |  |  |  |
| c. Mobile Application Development |                                                             |       |  |  |  |  |  |  |  |
| d. Professional Elective          |                                                             | 18-25 |  |  |  |  |  |  |  |
| e. Open Elective                  |                                                             | -     |  |  |  |  |  |  |  |
| f. Mini Project                   |                                                             | 28    |  |  |  |  |  |  |  |
| g. Project Phase-1                |                                                             | 29    |  |  |  |  |  |  |  |
| 7. Syllabus of Eighth Semes       | ter BE:                                                     |       |  |  |  |  |  |  |  |
| a. Object Oriented Analy          | vsis and Design                                             | 32    |  |  |  |  |  |  |  |
| b. Data Mining and Mac            | hine Learning                                               | 34    |  |  |  |  |  |  |  |
| c. Internship                     |                                                             | 36    |  |  |  |  |  |  |  |
| d. Project                        |                                                             |       |  |  |  |  |  |  |  |
| Appendix A Outcome Based H        | Education                                                   | 40    |  |  |  |  |  |  |  |
| Appendix B Graduate Parame        | ters as defined by National Board of Accreditation          | 41    |  |  |  |  |  |  |  |
| Appendix C Bloom's Taxonor        | endix C Bloom's Taxonomy 4                                  |       |  |  |  |  |  |  |  |

#### VISION

To emerge as a department of eminence in Computer Science and Engineering in serving the Information Technology Industry and the nation by empowering students with a high degree of technical and practical competence.

#### MISSION

- To strengthen the theoretical and practical aspects of the learning process by strongly encouraging a culture of research, innovation and hands-on learning in Computer Science and Engineering
- To encourage long-term interaction between the department and the IT industry, through the involvement of the IT industry in the design of the curriculum and its hands-on implementation
- To widen the awareness of students in professional, ethical, social and environmental dimensions by encouraging their participation in co-curricular and extracurricular activities

## **Program Education objectives (PEOs)**

- **PEO1** Proficiency as computer scientists with an ability to solve a wide range of computing- related problems in industry, government, or other work environments.
- **PEO2** Ability to adapt quickly to new environments and technologies, assimilate new information, and work in multi-disciplinary areas with a strong focus on innovation and entrepreneurship.
- **PEO3** Possess the ability to think logically and the capacity to understand technical problems with computing systems and design alternative solutions.
- **PEO4** Possess an ability to collaborate as a team member and team leader to affect technical solutions for computing systems, providing improved function and outcomes.

| Mission Statements                                                                                                                              | PEO1 | PEO2 | PEO3 | PEO4 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| To educate graduates and research scholars to be successful, ethical, and effective problem-solvers and life-long learners.                     | 3    | -    | 2    | -    |
| Produce versatile Computer Science graduates infused not<br>only with technical skills, but also with innovative and<br>entrepreneurial skills. | -    | 3    | -    | -    |
| Prepare graduates for successful careers in Software Industry.                                                                                  | 3    | 3    | 3    | 3    |
| Provide a great work and learning environment and treat each other with respect and dignity.                                                    | -    | -    | 2    | 3    |
| To prepare graduates well enough to function as professional computer scientists and computer engineers.                                        | -    | 3    | -    | -    |

## **PEO to Mission Statement Mapping**

Correlation: 3- High, 2-Medium, 1-Low

# **Program Outcomes (PO) with Graduate Attributes**

|    | Graduate Attributes                 | Program Outcomes<br>(POs)                                                                                                                                   |  |  |  |  |  |  |
|----|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1  | Engineering Knowledge               | <b>PO1:</b> The basic knowledge of Mathematics, Science and Engineering.                                                                                    |  |  |  |  |  |  |
| 2  | Problem analysis                    | <b>PO2:</b> An Ability to analyse, formulate and solve engineering problems.                                                                                |  |  |  |  |  |  |
| 3  | Design and Development of Solutions | <b>PO3:</b> An Ability to design system, component or product and develop interfaces among subsystems of computing.                                         |  |  |  |  |  |  |
| 4  | Investigation of Problem            | <b>PO4:</b> An Ability to identify, formulate and analyze complex engineering problem and research literature through core subjects of Computer Science.    |  |  |  |  |  |  |
| 5  | Modern Tool usage                   | <b>PO5:</b> An Ability to use modern engineering tools and equipment for computing practice.                                                                |  |  |  |  |  |  |
| 6  | Engineer and society                | <b>PO6:</b> An Ability to assess societal, health, cultural, safety and legalissues in context of professional practice in Computer Science & Engineering.  |  |  |  |  |  |  |
| 7  | Environment and sustainability      | <b>PO7:</b> The broad education to understand the impact of engineering solution in a global, economic, environmental and societal context.                 |  |  |  |  |  |  |
| 8  | Ethics                              | <b>PO8:</b> An understanding of professional and ethical responsibility.                                                                                    |  |  |  |  |  |  |
| 9  | Individual & team work              | <b>PO9:</b> An Ability to work both as individual and team player in achieving a common goal.                                                               |  |  |  |  |  |  |
| 10 | Communication                       | <b>PO10:</b> To communicate effectively both in written and oral formats with wide range of audiences.                                                      |  |  |  |  |  |  |
| 11 | Lifelong learning                   | <b>PO11:</b> Knowledge of contemporary issues, Management and Finance.                                                                                      |  |  |  |  |  |  |
| 12 | Project management and finance      | <b>PO12:</b> An Ability to recognize the need and thereby to engage in independent and life-long learning for continued professional andcareer advancement. |  |  |  |  |  |  |

# Mapping of POs TO PEOs

|      | PO1 | PO2 | <b>PO3</b> | PO4 | PO5 | <b>PO6</b> | <b>PO7</b> | <b>PO8</b> | PO9 | <b>PO10</b> | PO11 | PO12 |
|------|-----|-----|------------|-----|-----|------------|------------|------------|-----|-------------|------|------|
| PEO1 | 3   | 3   | 3          | -   | -   | -          | -          | -          | -   | -           | -    | -    |
| PEO2 | -   | -   | -          | -   | -   | -          | -          | -          | -   | -           | -    | -    |
| PEO3 | -   | -   | 3          | 3   | -   | -          | -          | -          | -   | -           | 3    | -    |
| PEO4 | -   | -   | -          | -   | -   | -          | -          | -          | 3   | -           | -    | -    |

Correlation: 3- High, 2-Medium, 1-Low

## NEW HORIZON COLLEGE OF ENGINEERING Department of Computer Science & Engineering Seventh Semester B.E. Program – Scheme AY: 2020-2021

| ç        | 7              | Course                     | Cre | dit Dis | tribut | ion | <b>.</b>           | Contact                     | Contact                  | Marks |     |       |
|----------|----------------|----------------------------|-----|---------|--------|-----|--------------------|-----------------------------|--------------------------|-------|-----|-------|
| 5.<br>No | Course<br>Code | Course                     | L   | Р       | т      | S   | Overall<br>Credits | hours<br>Weekly<br>(Theory) | hours<br>Weekly<br>(Lab) | CIE   | SEE | Total |
| 1        | CSE71          | Web<br>Technologies        | 3   | 2       | 0      | 0   | 5                  | 4                           | 4                        | 75    | 75  | 150   |
| 2        | CSE72          | Software<br>Testing        | 3   | 2       | 0      | 0   | 5                  | 4                           | 4                        | 75    | 75  | 150   |
|          |                | Mobile                     |     |         |        |     |                    |                             |                          |       |     |       |
| 3        | CSE73          | Application<br>Development | 3   | 2       | 0      | 0   | 5                  | 4                           | 4                        | 75    | 75  | 150   |
| 4        | CSE74X         | Professional<br>Elective   | 3   | 0       | 0      | 1   | 4                  | 4                           | 0                        | 50    | 50  | 100   |
| 5        | CSE75X         | Open Elective              | 3   | 0       | 0      | 1   | 4                  | 0                           | 3                        | 50    | 50  | 100   |
| 6        | CSE76          | Mini Project               | 0   | 2       | 0      | 0   | 2                  | 0                           | 2                        | 25    | 25  | 50    |
| 7        | CSE77          | Project Phase-1            | 0   | 4       | 0      | 0   | 4                  | -                           | 2                        | 50    | 50  | 100   |
|          |                | TOTAL                      |     | 29      | 16     | 19  | 400                | 400                         | 800                      |       |     |       |

| COURSE CODE | PROFESSIONAL ELECTIVE             |
|-------------|-----------------------------------|
| -           |                                   |
| CSE741      | Fundamentals of Data Science      |
| CSE742      | Cryptography & Network Security   |
| CSE743      | Artificial Intelligence           |
| CSE744      | Real Time Operating System        |
| CSE745      | Cyber Security, Forensics and Law |
| CSE746      | Internet of Things                |

| Course Code | <b>Open Electives</b>                                                                         |
|-------------|-----------------------------------------------------------------------------------------------|
| NHOP01      | Big Data Analytics using HP Vertica- 1                                                        |
| NHOP02      | VM Ware virtualization Essentials – 1                                                         |
| NHOP03      | Adobe Experience manager – 1                                                                  |
| NHOP04      | Big Data Analytics using HP Vertica – 2<br>(Prerequisite: CSE553/ECE563/EEE563/ISE563/NHOP01) |
| NHOP05      | VM Ware virtualization Essentials – 2<br>(Prerequisite: CSE552/ECE562/IEE562/ISE562/NHOP02)   |
| NHOP06      | Adobe Experience manager – 2<br>(Prerequisite: CSE551/ECE561/EEE561/ISE561/NHOP03)            |
| NHOP07      | SAP                                                                                           |
| NHOP08      | Schneider – Industry Automation                                                               |
| NHOP09      | Cisco – Routing and Switching – 1                                                             |
| NHOP10      | Data Analytics                                                                                |
| NHOP11      | Machine Learning                                                                              |
| NHOP12      | Cisco – Routing and Switching – 2<br>(Prerequisite: NHOP09)                                   |
| NHOP13      | Industrial Internet of Things- Embedded Systems                                               |
| NHOP14      | Blockchain                                                                                    |
| NHOP15      | Product Life Cycle Management                                                                 |

## NEW HORIZON COLLEGE OF ENGINEERING Department of Computer Science & Engineering Eighth Semester B.E. Program – Scheme AY: 2020-2021

|       |                |                                           | Cre | dit Di | stribu | tion |                    | Contact                     | Contact                  | Marks |     |       |
|-------|----------------|-------------------------------------------|-----|--------|--------|------|--------------------|-----------------------------|--------------------------|-------|-----|-------|
| S. No | Course<br>Code | Course                                    | L   | Р      | Т      | S    | Overall<br>Credits | hours<br>Weekly<br>(Theory) | hours<br>Weekly<br>(Lab) | CIE   | SEE | Total |
| 1     | CSE81          | Object Oriented<br>Analysis and<br>Design | 3   | 0      | 1      | 1    | 5                  | 4                           | 0                        | 50    | 50  | 100   |
| 2     | CSE82          | Data Mining and<br>Machine Learning       | 3   | 0      | 0      | 1    | 4                  | 4                           | 0                        | 50    | 50  | 100   |
| 3     | CSE83          | Internship                                | 0   | 4      | 0      | 0    | 4                  | -                           | -                        | 50    | 50  | 100   |
| 4     | CSE84          | Project                                   | 0   | 12     | 0      | 0    | 12                 | -                           | -                        | 50    | 50  | 100   |
|       |                | TOTAL                                     |     | 25     | 8      | 0    | 200                | 200                         | 400                      |       |     |       |

# SEVENTH SEMESTER SYLLABUS

## **WEB TECHNOLOGIES**

| <b>Course Code</b> | : CSE71   | Credits   | :05     |
|--------------------|-----------|-----------|---------|
| L: P: T: S         | : 3:2:0:0 | CIE Marks | : 50+25 |
| Exam Hours         | : 3+3     | SEE Marks | : 50+25 |

## COURSE OUTCOMES: At the end of the Course, the Student will be able to

| <b>CO</b> # | COURSE OUTCOMES                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|
| <b>CO1</b>  | Develop static web pages using XHTML tags.                                                                                         |
| CO2         | Create static web pages using different levels of styles and selector forms in CSS.                                                |
| CO3         | Create dynamic web pages using javascript for the real time applications.                                                          |
| <b>CO4</b>  | Create dynamic documents using java script and develop server side programs using servlets for business and personal requirements. |
| CO5         | Develop server side programs using PHP, Mysql and file with the help of advanced tools.                                            |
| CO6         | Design and develop a web based project/program incorporating different web technologies.                                           |

## **Course Outcomes to Program Outcomes Articulation Matrix**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| C01 | 3   | 3   | 3   | -   | 3   | -   | -   | -   | 3   | -    | -    | -    | 3    | -    |
| CO2 | 3   | 3   | 3   | -   | 3   | -   | -   | -   | 3   | -    | -    | -    | 3    | -    |
| CO3 | 3   | -   | 3   | -   | 3   | -   | -   | -   | 3   | -    | -    | -    | 3    | -    |
| CO4 | 3   |     | 3   | 2   | 3   | -   | I   | -   | 3   | -    | -    | -    | 3    | -    |
| CO5 | 3   |     | 3   | -   | 3   | -   | I   | -   | 3   | -    | -    | -    | 3    | -    |
| C06 | 3   | 3   | 3   | 2   | 3   | -   | -   | -   | 3   | 1    | 1    | 1    | 3    | -    |

| Module | Contents of the Module                                                                                                                                                                                              | COs | Hours |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
|        | <b>Fundamentals of Web, XHTML:</b> Internet, WWW, Web Browsers and Web<br>Servers LIBLS MIME HTTP. Security. The Web Programmers Toolbox                                                                            | CO1 | 9     |
| 1      | Introduction to XHTML: Basic syntax, Standard structure, Basic text mark-<br>up Images Hypertext Links Lists Tables Forms                                                                                           |     |       |
|        | List of Experiments 1. Design the following static webpages                                                                                                                                                         |     |       |
|        | <ol> <li>LoginPage</li> <li>Class TimeTable</li> </ol>                                                                                                                                                              |     | 8     |
| 2      | <b>Cascading Style Sheets:</b> Introduction, Levels of style sheets, Style specification formats, Selector forms, Property value forms, Font properties, List properties, Colour, Alignment of text, The box model, |     | 9     |
|        | List of Experiments<br>Design a web page using CSS which includes the following:                                                                                                                                    |     | 9     |
|        | 2)Set a background image for both the page and single elements on the page.                                                                                                                                         |     |       |
|        | 3)Control the repetition of the image with the background-repeat property.                                                                                                                                          |     |       |

|   | Javscript Overview: Overview of Javascript, Object orientation and<br>Javascript, Syntactic characteristics, Primitives, operations, and expressions,<br>Screen output and keyboard input, Control statements, Object creation and<br>modification, Arrays, Functions, Constructors, Pattern matching using<br>regular expressions, Errors in scripts, Examples.<br>JavaScript with HTML Documents (I): The Javascript execution<br>environment, The Document Object Model, Element access in Javascript,<br>Events and event handling, Handling events from the Body elements, Button<br>elements, Text box and Password elements | соз | 9 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|   | List of related Experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |   |
| 3 | <ol> <li>Develop and demonstrate a XHTML file that includes Javascript script for<br/>the following problems:</li> <li>Input: A number n obtained using prompt Output: The</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |   |
|   | first n Fibonacci numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |
|   | <ol> <li>Input: A number n obtained using prompt<br/>Output: A table of numbers from 1 to n and their squares using alert</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 9 |
|   | 2.a) Develop and demonstrate, using Javascript script, a XHTML document<br>that collects the USN (the valid format is: A digit from 1 to 4 followed by two<br>upper-case characters followed by two digits followed by two upper-case<br>characters followed by three digits; no embedded spaces allowed) of the<br>user. Event handler must be included for the form element that collects this                                                                                                                                                                                                                                   |     |   |
|   | information to validate the input. Messages in the alert windows must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |
|   | produced when errors are detected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |   |
| 4 | <b>Dynamic Documents with Javascript (II):</b> Introduction to dynamic documents, positioning elements, Moving elements, Element visibility, Changing colors and fonts, Dynamic content, Stacking elements, Locating the mouse cursor, Reacting to a mouse click, Slow movement of elements, Dragging and dropping elements.<br>Introduction to Servlets: Life cycle of a servlet. The Servlet API,                                                                                                                                                                                                                                | CO4 | 9 |
|   | List of Experiments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 9 |
|   | a) Develop and demonstrate, using Javascript script, a XHTML document that<br>contains three short paragraphs of text, stacked on top of each other, with<br>only enough of each showing so that the mouse cursor can be placed over<br>some part of them. When the cursor is placed over the exposed part of any<br>paragraph, it should rise to the top to become completely visible                                                                                                                                                                                                                                             |     |   |
|   | b) Modify the above document so that when a paragraph is moved from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |
|   | top stacking position, it returns to its original position rather than to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |   |
|   | bottom.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |
|   | <ol> <li>Assume four users user1, user2, user3 and user4 having the<br/>passwordspwd1,</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |   |
|   | pwd2, pwd3 and pwd4 respectively. Write a servlet to do the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |   |
|   | a. Create a Cookie and add these four user ids and passwords to this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |
|   | Cookie.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |   |
|   | b. Read the user id and passwords entered in the Login form and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |   |
|   | authenticate with the values available in the cookies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |   |
| 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |   |

|                                                                           | 9 |
|---------------------------------------------------------------------------|---|
| PHP: Origins and uses of PHP, Overview of PHP, General syntactic          |   |
| characteristics, Primitives, operations and expressions, Output, Control  |   |
| statements, Arrays, Functions, Pattern matching, Form handling, Files,    |   |
| Cookies, Session tracking                                                 |   |
| Using PHP with MySQL : Database access with PHP and MySQL.                |   |
| List of Experiments                                                       | 9 |
| 1 (a) Write a PHP program to accept UNIX command from a HTML form and     |   |
| to display the output of the command executed.                            |   |
| (b) Write a PHP program to accept the User Name and display a greeting    |   |
| message randomly chosen from a list of 4 greeting messages.               |   |
| 2. Write a PHP program to store current date-time in a COOKIE and display |   |
| the 'Last visited on' date-time on the web page upon reopening of the     |   |
| same page.                                                                |   |
| 3. Write a PHP program to store page views count in SESSION, to increment |   |
| the count on each refresh, and to show the count on web page.             |   |
| 4. Create a XHTML form with Name, AddressLine1, AddressLine2,             |   |
| and E-mail text fields. On submitting, store the values in MySQL table.   |   |
| Retrieve and display the data based on Name.                              |   |

Text Books:

1. Robert W. Sebesta: Programming the World Wide Web, 4th Edition, Pearson education, 2012. Reference books:

- 1. M. Deitel, P.J. Deitel, A. B. Goldberg: Internet & World Wide Web How to Program, 3rd Edition, Pearson education, 2004.
- 2. Chris Bates: Web Programming Building Internet Applications, 3rd Edition, Wiley India, 2009

| Bloom's Category  | Tests | Assignments | Quizzes |
|-------------------|-------|-------------|---------|
| Marks (out of 50) | 25    | 15          | 10      |
| Remember          | 5     |             |         |
| Understand        | 5     |             |         |
| Apply             | 5     | 7.5         |         |
| Analyze           | 5     |             | 10      |
| Evaluate          |       |             |         |
| Create            | 5     | 7.5         |         |

## **CIE-** Continuous Internal Evaluation (50Marks)

**CIE-Continuous Internal Evaluation: Lab(25Marks)** 

| Bloom's Category  | Tests |
|-------------------|-------|
| Marks (out of 25) | 25    |
| Remember          |       |
| Understand        |       |
| Apply             |       |
| Analyze           |       |
| Evaluate          |       |
| Create            | 25    |

| Bloom's Category | Tests |
|------------------|-------|
| Remember         | 5     |
| Understand       | 10    |
| Apply            | 10    |
| Analyze          | 10    |
| Evaluate         | 5     |
| Create           | 10    |

## SEE- Semester End Examination: Theory (50Marks)

## SEE- Semester End Examination: Lab (25 Marks)

| Bloom's Category | Tests |
|------------------|-------|
| Remember         |       |
| Understand       |       |
| Apply            | 5     |
| Analyze          | 5     |
| Evaluate         | 10    |
| Create           | 5     |

#### SOFTWARE TESTING

| Course Code | : CSE72   | Credits   | : 05    |
|-------------|-----------|-----------|---------|
| L: P: T: S  | : 3:2:0:0 | CIE Marks | : 50+25 |
| Exam Hours  | : 3+3     | SEE Marks | : 50+25 |

Course Outcomes: At the end of the Course, the Student will be able to:

| CO # | COURSE OUTCOME                                                                                   |
|------|--------------------------------------------------------------------------------------------------|
| CO1  | Apply the fundamentals of testing in solving real world problems.                                |
| CO2  | Design and evaluate test cases for various black box testing techniques using open source tools. |
| CO3  | Design and evaluate test cases for various white box testing techniques.                         |
| CO4  | Analyze and evaluate the test cases with concept of mutation.                                    |
| CO5  | Compare and contrast various software technical reviews and its review culture.                  |
| CO6  | Create test cases with automation testing tools.                                                 |

#### Mapping of Course Outcomes to Program Outcomes:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    | -    | -    |

| CO2 | 3 | 3 | 3 | - | 3 | - | - | - | 3 | - | - | - | 3 | - |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO3 | 3 | 3 | 3 | - | 3 | - | - | - | 3 | - | - | - | 3 | - |
| CO4 | 3 | 3 | 3 | 2 | 3 | - | - | - | 3 | - | - | - | 3 | - |
| CO5 | 3 | 3 | - | - | - | - | - | - | - | - | - | - | - | - |
| CO6 | 3 | 3 | 3 | 2 | 3 | - | - | - | 3 | - | - | - | 3 | 1 |

| Module<br>No | Module Contents                                                               | Hours | COs        |
|--------------|-------------------------------------------------------------------------------|-------|------------|
|              | Fundamentals of testing:                                                      |       |            |
|              | Basic Definitions, Test Cases, Identifying Test Cases, Fault Taxonomies,      |       |            |
|              | Levels of Testing, Generalized Pseudocode, The Triangle Problem, The          | 0     |            |
|              | NextDate Function, The Commission Problem, The SATM System, The               | 9     |            |
|              | Currency Converter, Saturn<br>Windshield Wiper Controller, Garage Door Opener |       |            |
|              | List of Programs:<br>Write test cases for the following scenarios             |       |            |
|              | 1) Take any ATM system (e.g. SBI Bank ATM system) and study its               |       |            |
|              | system specifications and report the various bugs                             |       |            |
|              | i) Machine is accepting ATM card.                                             |       |            |
| 1            | ii) Machine is rejecting expired card.                                        |       | <b>CO1</b> |
| T            | iii) Successful entry of PIN number.                                          | 9     | 01         |
|              | <ul><li>iv) Unsuccessful operation due to enter wrong PIN number</li></ul>    |       |            |
|              | 3times.                                                                       |       |            |
|              | v) Successful selection of language.                                          |       |            |
|              | vi) Successful selection of account type.                                     |       |            |
|              | viii) Successful selection of amount to be withdrawn                          |       |            |
|              | ix) Successful withdrawal.                                                    |       |            |
|              | x) Expected message due to amount is greater than day                         |       |            |
|              | limit.                                                                        |       |            |
|              | xi) Unsuccessful withdraw operation due to lack of money in                   |       |            |
|              | ATM                                                                           |       |            |
|              | xii) Expected message due to amount to withdraw is greater                    |       |            |
|              | than nossible balance                                                         |       |            |
|              | viii) Insuccessful withdraw operation due to click cancel after               |       |            |
|              | insert card                                                                   |       |            |
|              | 2) Triangle Problem.                                                          |       |            |
|              | 3) The Currency Converter                                                     |       |            |
|              | Black Box Testing                                                             |       |            |
|              | Boundary Value Testing Normal Boundary Value Testing Robust                   |       |            |
|              | Boundary Value Testing, Normal Boundary Value Testing Robust                  |       |            |
|              | Value Testing, Examples, Bandem Testing Cuidelines for Boundary               |       |            |
|              | Value Testing, Examples, Randolli Testing Guidelines for Boundary             |       |            |
|              | Fauivalence Class Testing                                                     |       |            |
|              | Equivalence Classes Traditional Equivalence Class Testing Improved            |       |            |
|              | Equivalence Class Testing Equivalence Class Testing Improved                  |       |            |
| 2            | Triangle Broblem Equivalence Class Test Cases for the NevtDate                | 10    |            |
|              | Function Equivalence Class Test Cases for the Commission Broblem              |       |            |
|              | Function, Equivalence Class Test Cases for the Commission Problem,            |       | CO2        |
|              | Eage Testing                                                                  |       | 002        |
|              | Decision Tables. Decision Table Techniques                                    |       |            |
|              | Test Cases for the Triangle Problem. Test Cases for the NextDate              |       |            |
|              | Function, Test Cases for the Commission Problem                               |       |            |
|              | List of Programs:                                                             |       |            |
|              | Demonstrate Black box testing techniques using open source testing            | 9     |            |
| 1            | 1001                                                                          | -     | 1          |

|   | Path Testing                                                                         |   |      |
|---|--------------------------------------------------------------------------------------|---|------|
|   | Program Graphs, DD-Paths, Test Coverage Metrics, Basis Path Testing                  |   |      |
|   | Data Flow Testing<br>Define (Use Testing, Slice Based Testing, Brogram Slicing Teals | 8 |      |
| _ | Define/Ose resting, Silce-Based resting, Program Silcing roots                       | - |      |
| 3 | List of Programs:                                                                    |   | CO3  |
|   | Demonstrate White box testing techniques using open source testing tool              | 9 |      |
|   | Evaluating Test Cases                                                                |   |      |
|   | Mutation Testing, Fuzzing, Fishing Creel Counts and Fault Insertion                  |   |      |
|   | Software Technical Reviews                                                           |   | CO4. |
|   | ECONOMICS OF SOFTWARE REVIEWS, KOIES IN A REVIEW                                     |   | CO5  |
| 4 | Industrial-Strength Inspection Process, Effective Review Culture,                    | 9 |      |
| - | Inspection Case Study                                                                |   |      |
|   | List of Programs:                                                                    | 9 |      |
|   | Test cases to find mutants                                                           | - |      |
|   | Introduction to Test Automation                                                      |   |      |
|   | Use of Automation Testing, Selenium IDE, Selenium RC Architecture,                   |   |      |
|   | Selenium RC Vs WebDriver, Selenium Webdriver/version 2.0,                            |   |      |
|   | Configure Selenium WebDriver, Scripting using WebDriver: Selenium                    |   |      |
|   | <ul> <li>Locators, Locators Usage TestNG: Need of TestNG, Installing</li> </ul>      | 9 |      |
|   | TestNG for Eclipse, Report generation by TestNG, Grouping of Test                    | • |      |
| 5 | Case, Set priority for Test case, Annotation of TestNG, Dependency in                |   | CO6  |
| - | TestNG, Assert                                                                       |   |      |
|   | in TestNG                                                                            |   |      |
|   | List of Programs.<br>Test cases and report generation using selenium Web driver and  |   |      |
|   | testing                                                                              | 8 |      |

#### Text Book(s):

- 1. Paul C. Jorgensen: Software Testing, A Craftsman's Approach, 4th Edition, Auerbach Publications, 2013.
- 2. Selenium Web Driver Practical Guide, SatyaAvasarala,

#### Reference Book(s):

- 1. Software testing Principles and Practices Gopalaswamy Ramesh, Srinivasan Desikan, 2nd Edition, Pearson, 2007.
- 2. Software Testing Ron Patton, 2nd edition, Pearson Education, 2004.
- 3. Mauro Pezze, Michal Young: Software Testing and Analysis Process, Principles and Techniques, Wiley India, 2009.

#### CIE – Continuous Internal Evaluation: Theory (50 Marks)

| Blooms<br>Taxonomy | Tests | Assignments | Quizzes |  |  |
|--------------------|-------|-------------|---------|--|--|
| Marks (Out of      | 25    | 15          | 10      |  |  |
| 50)                |       |             |         |  |  |
| L1: Remember       | 5     | -           | -       |  |  |
| L2: Understand     | 5     | -           | -       |  |  |
| L3: Apply          | 10    |             | 10      |  |  |
| L4: Analyze        | 5     |             |         |  |  |
| L5: Evaluate       | -     | -           | -       |  |  |
| L6: Create         | -     | 15          | -       |  |  |

#### CIE – Continuous Internal Evaluation: Lab (25 Marks)

| Blooms       | Marks       |
|--------------|-------------|
| Taxonomy     | (Out of 25) |
| L1: Remember | -           |

| L2: Understand | -  |
|----------------|----|
| L3: Apply      | 5  |
| L4: Analyze    | 5  |
| L5: Evaluate   | 5  |
| L6: Create     | 10 |

SEE – Semester End Examination: Theory (50 Marks)

| Blooms<br>Taxonomy | Marks<br>(Out of 50) |
|--------------------|----------------------|
| L1: Remember       | 10                   |
| L2: Understand     | 15                   |
| L3: Apply          | 5                    |
| L4: Analyze        | 10                   |
| L5: Evaluate       | 5                    |
| L6: Create         | 5                    |

#### SEE – Semester End Examination: Lab (25 Marks)

| Blooms<br>Taxonomy | Marks<br>(Out of 25) |
|--------------------|----------------------|
| L1: Remember       | -                    |
| L2: Understand     | -                    |
| L3: Apply          | 5                    |
| L4: Analyze        | 5                    |
| L5: Evaluate       | 5                    |
| L6: Create         | 10                   |

## **Mobile Application Development**

| <b>Course Code</b> | : CSE73   |
|--------------------|-----------|
| L: P: T: S         | : 3:2:0:0 |
| Exam Hours         | : 3+3     |

| Credits          | : 05    |
|------------------|---------|
| <b>CIE Marks</b> | : 50+25 |
| SEE Marks        | : 50+25 |

## COURSE OUTCOMES: At the end of the Course, the Student will be able to

| COs | COURSE OUTCOMES                                                                                |
|-----|------------------------------------------------------------------------------------------------|
| CO1 | Apply the basics of android to develop mobile applications                                     |
| CO2 | Analyze the architecture and design applications using android SDK                             |
| CO3 | Develop applications using data storage, file sharing and inter process communication concepts |
| CO4 | Create applications to interface sensors and bluetooth connectivity                            |
| CO5 | Design mobile applications using multimedia graphics and animations                            |
| CO6 | Deploy and monetize mobile applications                                                        |

### **Course Outcomes to Program Outcomes Articulation Matrix**

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | -   | -   | -   | 3   | -   | -   | -   | 3   | -    | -    | 2    | 3    | -    |
| CO2 | 3   | 3   | -   | -   | 3   | -   | -   | -   | 3   | -    | -    | 2    | 3    | 3    |
| CO3 | 3   | 3   | 3   | -   | 3   | -   | -   | -   | 3   | -    | -    | -    | 3    | -    |
| CO4 | 3   | 3   | 3   | 1   | 3   | -   | -   | -   | 3   | -    | -    | -    | 3    | 3    |

| CO5 | 3 | 3 | 3 | 1 | 3 | - | - | - | 3 | - | - | - | 3 | 3 |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO6 | 3 | 3 | - | - | 3 | - | - | - | 3 | - | - | - | 3 | - |

| Module | Module Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hours | COs         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| No     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |             |
| 1      | <b>INTRODUCTION TO ANDROID</b><br>Android architecture, Android studio-Project Structure, User Interface,<br>Gradle build system, Debug and profile tools. Android Emulator, AVD in<br>Android studio, Hardware device. Basic Building blocks – Activities,<br>Services, Broadcast Receivers & Content providers, UI Components- Views<br>& notifications, Components for communication -Intents & Intent Filters                                                                                                                         | 10    | C01         |
|        | List of Programs:<br>1) Using Android SDK display <b>Hello world</b> in android.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8     |             |
| 2      | APPLICATION STRUCTURE AND BASIC UI DESIGN<br>Activity, Lifecycle of activity, View, View groups, Layouts, Basic controls of<br>screen: Managing orientation, Using basic view: Textview, Button, Edit text<br>box, checkbox and radio button, Event handling for views, Recycler view,<br>Adapter and view holder, Alert dialog, Toast, Date picker, Timepicker                                                                                                                                                                           | 9     | CO2         |
|        | <ul> <li>List of Programs:</li> <li>Design and implement a single screen app that displays information about a small business. eg. Restaurant, Book shop etc Your design must include: <ul> <li>Business name</li> <li>Photo of business</li> <li>Contact information</li> </ul> </li> <li>Design and develop a Mobile App for smart phones The Easy Unit Converter using Android</li> <li>Design and develop a Mobile App for smart phones Currency Converter</li> </ul>                                                                 | 9     |             |
| 3      | <b>INTENTS, SERVICE AND NOTIFICATION</b> Concept of Intents, Implicit and Explicit intent, Service, Overview of services in Android, Implementing a Service, Service lifecycle, Broadcast Receiver, Notification         List of Programs:         Design an app for <b>Tourist spot</b> : With three activities, Welcome page, Display attractions of tourist spot and Webpage of the tourist spot         Design an android app play <b>music</b> in background                                                                         | 8     | CO3         |
| 4      | Design and deep play induct in backgroundDATA STORAGE AND INTERPROCESS COMMUNICATIONContent Provider, Shared Preferences, Preferences activity, Files access,<br>SQLite database, Threads, AsyncTaskList of Programs:Design and develop a Mobile App for smart phones The Expense Manager<br>using Android. The application should store all the expenses in a file2) Design and develop Health Monitoring App<br>using Android. The app will<br>store the blood pressure, blood group and glucose level of patient in SQLite<br>database | 9     | CO4,<br>CO5 |
| 5      | ADVANCED ANDROID AND ANDROID APP DEPLOYMENT<br>Sending SMS using App, Building apps with Location Based Services and<br>Google maps, Building app with Camera<br>Preparing for publishing – Signing & Versioning of apps, Using Google Play                                                                                                                                                                                                                                                                                               | 9     |             |

| to distribute & Monetize, Best practices for security and privacy       |   | CO6 |
|-------------------------------------------------------------------------|---|-----|
| List of Programs:                                                       |   |     |
| Develop an android app to display <b>Map</b> of your college locality   |   |     |
|                                                                         | 9 |     |
| 2) Develop an android app to alert <b>SMS</b> to one given phone number |   |     |

## Text Book(s):

- 1. Reto Meier; Professional Android 2 Application Development; Wiley India Pvt.ltd; 1st Edition; 2012; ISBN-13: 9788126525898.
- 2. Phillips, Stewart, Hardy and Marsicano; Android Programming, 2nd edition Big Nerd Ranch Guide;2015; ISBN-13 978-0134171494.

## Reference Book(s):

- 1. Mark Murphy; Beginning Android 3; Apress Springer India Pvt Ltd. ;1st Edition; 2011;ISBN-13: 978-1-4302-3297-1
- 2. Eric Hellman; Android Programming Pushing the limits by Hellman; Wiley; 2013; ISBN 13: 978-1118717370

| Blooms        | Tests | Assignments | Quizzes | Co-        | Self  |
|---------------|-------|-------------|---------|------------|-------|
| Taxonomy      |       |             |         | Curricular | Study |
| Marks         | 25    | 15          | 10      | -          | -     |
| (Out of 50)   |       |             |         |            |       |
| L1:Remember   | 2     | -           | -       | -          | -     |
| L2:Understand | 2     | -           | -       | -          | -     |
| L3:Apply      | 7     | 4           | 4       | -          | -     |
| L4:Analyze    | 5     | 4           | 4       | -          | -     |
| L5:Evaluate   | 5     | 3           | 2       | -          | -     |
| L6:Create     | 4     | 4           | -       | _          | -     |

### **CIE – Continuous Internal Evaluation : Theory ( 50 Marks)**

## CIE - Continuous Internal Evaluation : Lab ( 25 Marks)

| Blooms        | Marks       |
|---------------|-------------|
| Taxonomy      | (Out of 25) |
| L1:Remember   | 2           |
| L2:Understand | 2           |
| L3:Apply      | 7           |
| L4:Analyze    | 6           |
| L5:Evaluate   | 4           |
| L6:Create     | 4           |

## SEE - Semester End Examination: Theory ( 50 Marks)

| Blooms        | Marks       |
|---------------|-------------|
| Taxonomy      | (Out of 50) |
| L1:Remember   | 4           |
| L2:Understand | 4           |
| L3:Apply      | 14          |
| L4:Analyze    | 12          |

| L5:Evaluate | 8 |
|-------------|---|
| L6:Create   | 8 |

#### **FUNDAMENTALS OF DATA SCIENCE**

| Course Code : CSE741 | Credits          | :04  |
|----------------------|------------------|------|
| L: P: T: S : 3:0:0:1 | <b>CIE Marks</b> | : 50 |
| Exam Hours : 3       | SEE Marks        | : 50 |

### COURSE OUTCOMES: At the end of the Course, the Student will be able to

| CO # | COURSE OUTCOMES                                                                                 |
|------|-------------------------------------------------------------------------------------------------|
| C01  | Analyze fundamental concepts of data science.                                                   |
| CO2  | Analyze real time data to draw insights for the societal improvement.                           |
| CO3  | Apply Bayesian model for predicting futuristic data.                                            |
| CO4  | Analyze the data using inferential statistical models to draw insights for the society.         |
| CO5  | Evaluate different mathematical models and identify the suitable model for a given application. |
| CO6  | Interpret data using visualization techniques.                                                  |

## **Course Outcomes to Program Outcomes Articulation Matrix**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| C01 | 3   | -   | -   | -   | -   | -   | -   | -   | -   | 3    | -    | -    | -    | 3    |
| CO2 | 3   | 3   | -   | -   | -   | 2   | -   | -   | -   | 3    | -    | -    | -    | 3    |
| CO3 | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | 3    | -    | -    | -    | 3    |
| CO4 | 3   | 3   | -   | -   | -   | 2   | -   | -   | -   | 3    | -    | -    | -    | 3    |
| CO5 | 3   | 3   | -   | 1   | -   | -   | -   | -   | -   | 3    | -    | -    | -    | 3    |
| C06 | 3   | 3   | -   | -   | -   | -   | -   | 1   | _   | 3    | -    | -    | -    | 3    |

| Module<br>No | Module Contents                                                                                                                                                                                                                                             | Hours | COs         |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| 1            | What is Data Science? Basic Terminology, Why Data Science?,<br>Example – Sigma Technologies, The data science Venn diagram,<br>The math: Example – Spawner-Recruit Models, Computer<br>programming, Data Science terminology, Data science case<br>studies. | 9     | C01         |
| 2            | Types of data, Structured Vs unstructured data, Quantitative Vs<br>Qualitative data, Four levels of data. Steps of data science,<br>Explore the data with sample data sets.                                                                                 | 9     | CO2         |
| 3            | Introduction to probability: Definition, Bayesian Vs frequentist,<br>compound event, conditional probability, rules of probability,<br>advanced probability, Bayes theorem and its applications,<br>random variables.                                       | 9     | CO3         |
| 4            | Basic statistics: Introduction, how do we obtain and sample<br>data, sampling data, how do we measure statistics, the empirical<br>rule, Advanced statistics: Point estimates, sampling<br>distributions,<br>confidence interval, hypothesis tests.         | 9     | CO4,<br>CO5 |

| 5 | Visualization: Communicating data, Identifying effective and       | 9 | CO6 |
|---|--------------------------------------------------------------------|---|-----|
|   | ineffective visualizations, when graphs and statistics lie, verbal |   |     |
|   | communications, the why ,how, what strategy of presenting.         |   |     |

**Text Book:** 1. "Principles of Data Science", "Sinan Ozdemir", Packt Publishing.

#### **Reference Book(s):**

- 1. Doing Data Science: Straight Talk from the Frontline", "Cathy O'Neil, Rachel Schutt," O'Reilly Media, 2013
- 2. "Data Science from Scratch First Principles with Python" "Joel Grus" O'Reilly Media, 2015

#### CIE – Continuous Internal Evaluation: Theory (50 Marks)

| Blooms<br>Taxonomy | Tests | Cocurricular- NPTEL |
|--------------------|-------|---------------------|
| Marks (Out of      | 25    | 25                  |
| 50)                |       |                     |
| L1: Remember       | 5     | 10                  |
| L2: Understand     | 5     | 1                   |
| L3: Apply          | 10    | 1                   |
| L4: Analyze        | 5     | 10                  |
| L5: Evaluate       | -     | 1                   |
| L6: Create         | -     | 2                   |

## SEE – Semester End Examination: Theory (50 Marks)

| Blooms<br>Taxonomy | Marks<br>(Out of 50) |
|--------------------|----------------------|
| L1: Remember       | 10                   |
| L2: Understand     | 10                   |
| L3: Apply          | 20                   |
| L4: Analyze        | 10                   |
| L5: Evaluate       | -                    |
| L6: Create         | -                    |

#### **CRYPTOGRAPHY AND NETWORK SECURITY**

| : CSE742  | Credits   | : 04 |
|-----------|-----------|------|
| : 3:0:0:1 | CIE Marks | : 50 |
| : 3       | SEE Marks | : 50 |

Course Outcomes: At the end of the Course, the Student will be able to

| CO1 | Understand and learn the security architecture, model and mechanisms to work with classical encryption techniques       |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| CO2 | Recognize and apply block cipher design principles and advanced encryptions standards to create secure cryptosystems    |
| CO3 | Analyze various public key cryptosystems and their vulnerability to attack, and learn different key exchange mechanisms |
| CO4 | Able to generate digital signatures with Hash and or MAC algorithms for secure Authentication                           |
| CO5 | Identify some of the factors driving the need for network and system security                                           |
| CO6 | Design security applications in the field of Information technology                                                     |

#### **Mapping of Course Outcomes to Program Outcomes**

**Course Code** L: P: T: S **Exam Hours** 

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 |
|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|

| CO1 | 2 | 2 | 2 | 2 | - | 1 | 1 | - | - | - | - | - |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|
| CO2 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | - | - | - | 2 | 2 |
| CO3 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | - | - | - | - | 2 |
| CO4 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | - | - | - | - | 2 |
| CO5 | 2 | 2 | 2 | 3 | 2 | 1 | 1 | - | - | - | 2 | 2 |
| CO6 | 2 | 2 | 3 | 2 | 3 | 1 | 1 | - | - | - | 2 | 3 |
|     |   |   |   |   |   |   |   |   |   |   |   |   |

#### 1: Low 2: Med

| lium | 3: High |
|------|---------|
|------|---------|

| Module<br>No | Module Contents                                                                                             | Hours | COs  |
|--------------|-------------------------------------------------------------------------------------------------------------|-------|------|
| 1            | Introduction: Security Trends, The OSI security                                                             | 09    | CO1  |
|              | Architecture, Security-Attacks, Services, Mechanisms,                                                       |       |      |
|              | Network Security Model Classical Encryption Techniques:                                                     |       |      |
|              | Symmetric Cipher Model,<br>Substitution, Transposition Techniques, Steganography                            |       |      |
| 2            | Block Ciphers and Data Encryption Standard: Block                                                           | 09    | CO2  |
|              | Cipher Principles, DES, Strength of DES, Block Cipher                                                       |       |      |
|              | Design Principles, Groups, Rings, Fields, Modular                                                           |       |      |
|              | Arithmetic, Euclidean Algorithm, Advanced Encryption                                                        |       |      |
|              | Standard: Evaluation criteria of AES, The AES Cipher,                                                       |       |      |
|              | Multiple Encryption and Triple DES, Block Cipher<br>Modes of Operation, Stream Ciphers and BC4              |       |      |
| 3            | Public Key Cryptography: Fermat's and Euler's Theorem,                                                      | 09    | CO3  |
|              | The Chinese Remainder Theorem, Principles of Public                                                         |       |      |
|              | Key Cryptosystems, The RSA Algorithm, Key                                                                   |       |      |
|              | Management- Introduction, Diffie-Hellman Key                                                                |       |      |
|              | Exchange, Public Key Cryptosystems-Elliptic Curve                                                           |       |      |
|              | Cryptography, Authentication-Requirements, Functions,                                                       |       |      |
|              | Message Authentication Codes                                                                                |       |      |
| 4            | Hash and MAC Algorithms: Hash Functions, Security of                                                        |       |      |
| -            | Hash Functions and MAC, Secure Hash Algorithm,                                                              |       |      |
|              | Whiripool, HMAC, CMAC                                                                                       | 09    | CO4  |
|              | Digital Signatures and Authentication: Digital Signatures                                                   |       |      |
|              | Applications Karbaras, X 500 Service                                                                        |       |      |
|              | Applications-Keiberos, X.509 Service                                                                        |       |      |
|              | S/MIME ID Security-Architecture Authentication                                                              |       |      |
| 5            | Header Key Management Web Security-Considerations                                                           | 09    | CO5, |
|              | SSL and TL Security. Secure Electronic Transaction                                                          |       | 00   |
|              | <b>System Security:</b> Intruders, Malicious Software, Firewalls, Wireless Security, Mobile device security |       |      |

#### Text Book(s):

- 1. Cryptography and Network Security Principles and Practices, By William Stallings, VI-Edition, Pearson Education
- Reference Book(s): 1. Everyday Cryptography, Fundamental Principles & Applications, Keith Martin, Oxford
  - 2. Cryptography and Network Security Principles and Practices, By William Stallings, IV-Edition, Prentice Hall Publications
  - 3. Cryptography and Information Security, V k Pachghare, PHE ,2013.

### CIE – Continuous Internal Evaluation: Theory (50 Marks)

| Blooms<br>Taxonomy   | Tests | Cocurricular-<br>NPTEL |
|----------------------|-------|------------------------|
| Marks<br>(Out of 50) | 25    | 25                     |
| L1: Remember         | 05    | -                      |

| L2: Understand | 05 | -  |
|----------------|----|----|
| L3: Apply      | 05 | 5  |
| L4: Analyze    | 05 | 10 |
| L5: Evaluate   | -  | 10 |
| L6: Create     | 05 | -  |

## SEE- Semester End Examination: Theory (50 Marks)

| Blooms<br>Taxonomy | Marks<br>(Out of 50) |
|--------------------|----------------------|
| L1: Remember       | 10                   |
| L2: Understand     | 10                   |
| L3: Apply          | 10                   |
| L4: Analyze        | 10                   |
| L5: Evaluate       | -                    |
| L6: Create         | 10                   |

#### **ARTIFICIAL INTELLIGENCE**

Course Code: CSE743L: P: T: S: 3:0:0:1Exam Hours: 3

| Credits   | :04  |
|-----------|------|
| CIE Marks | : 50 |
| SEE Marks | : 50 |

#### COURSE OUTCOMES: At the end of the Course, the Student will be able to

| CO # | COURSE OUTCOMES                                                                                                                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| C01  | Apply the basic concepts of Artificial Intelligence and the searching techniques for the societal application.                                  |
| CO2  | Analyze different logics to represent knowledge, reasoning patterns in propositional logic and derive the proof from the facts using inference. |
| CO3  | Derive statistical reasoning for incomplete and uncertain Information using bayes theorem.                                                      |
| CO4  | Analyze different AI techniques for planning and learning.                                                                                      |
| CO5  | Demonstrate the fundamentals of conceptual dependency, game playing and design scripts.                                                         |
| CO6  | Evaluate different phases of natural language processing and connectionist models.                                                              |

#### **Course Outcomes to Program Outcomes Articulation Matrix**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| C01 | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | 3    | -    | 3    | -    | -    |
| CO2 | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | 3    | -    | -    | 3    | -    |
| CO3 | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | 3    | -    | 3    | 3    | -    |
| CO4 | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | 3    | -    | -    | -    | -    |
| CO5 | 3   | 3   | 3   | 2   | -   | -   | -   | -   | -   | 3    | -    | -    | 3    | -    |
| C06 | 3   | 3   | 3   | 2   | -   | -   | -   | -   | -   | 3    | -    | 3    | 3    | 1    |

| Module<br>No | Module Contents                                                                                                                                                                                                                                                 | Hours | Cos |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 1            | Introduction and Search techniques :<br>What is artificial intelligence?, Foundations of AI, Problem solving,<br>Problem Definition and characteristics, Spaces and search,<br>Heuristic search technique –Generate and test, Hill<br>climbing, Best fit search | 9     | C01 |

| 2 | Knowledge Representation                                                                                    | 9 | CO2  |
|---|-------------------------------------------------------------------------------------------------------------|---|------|
|   | Knowledge-based agents, The wumpus world as an example                                                      |   |      |
|   | world, Logic, propositional logic, Reasoning patterns in                                                    |   |      |
|   | propositional logic, Agents based on propositional logic. Syntax                                            |   |      |
|   | and semantics of first-order logic, Using first-order logic,<br>Knowledge engineering in first-order logic. |   |      |
| 3 | Reasoning with Uncertainty & Probabilistic Reasoning                                                        | 9 | CO3  |
|   | Symbolic Reasoning under Uncertainty-Nonmonotonic reasoning                                                 |   |      |
|   | implementation of BFS and DFS, Statistical reasoning-Bayes                                                  |   |      |
|   | theorem and Bayesian networks, Weak Slot and Filter Structures-<br>semantic nets and frames.                |   |      |
| 4 | Learning: Strong slot-and-filler structures-conceptual                                                      | 9 | CO4, |
|   | dependency, scripts, CYC, planning- Components and types,                                                   |   | CO5  |
|   | Game Playing, Learning: Forms of Learning, Inductive learning,                                              |   |      |
|   | Learning decision trees, Ensemble learning                                                                  |   |      |
| 5 | Advanced topics in AI:                                                                                      | 9 | CO6  |
|   | Natural Language Processing, Expert Systems, Connectionist                                                  |   |      |
|   | models.                                                                                                     |   |      |

#### **Text Books:**

- 1. E. Rich , K. Knight & S. B. Nair Artificial Intelligence, 3/e, McGraw Hill.
- 2. Stuart Rusell, Peter Norving , Artificial Intelligence: A Modern Approach, Pearson Education, 3rd Edition.
- 3. Akira Hanako, Modern Approach to Artificial Intelligence, Volume 1, Clanrye International, 2015

#### **Reference Books:**

- 1. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems Prentice Hal of India.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem Solving", Fourth Edition, Pearson Education, 2002.
- 3. Artificial Intelligence and Expert Systems Development by D W Rolston-McGraw hill.

#### CIE – Continuous Internal Evaluation: Theory (50 Marks)

| Blooms<br>Taxonomy   | Tests | Cocurricular-<br>NPTEL |
|----------------------|-------|------------------------|
| Marks<br>(Out of 50) | 25    | 25                     |
| L1: Remember         | 5     | -                      |
| L2: Understand       | 10    | -                      |
| L3: Apply            | 5     | 5                      |
| L4: Analyze          | 5     | 10                     |
| L5: Evaluate         | -     | 10                     |
| L6: Create           | -     | -                      |

#### SEE – Semester End Examination: Theory (50 Marks)

| Blooms<br>Taxonomy | Marks<br>(Out of 50) |
|--------------------|----------------------|
| L1: Remember       | 10                   |
| L2: Understand     | 20                   |
| L3: Apply          | 10                   |
| L4: Analyze        | 10                   |
| L5: Evaluate       | -                    |
| L6: Create         | -                    |

## **REAL TIME OPERATING SYSTEM**

| <b>Course Code</b> | : CSE744  | Credits   | :04  |
|--------------------|-----------|-----------|------|
| L: P: T: S         | : 3:0:0:1 | CIE Marks | : 50 |
| <b>Exam Hours</b>  | : 3       | SEE Marks | : 50 |

### COURSE OUTCOMES: At the end of the Course, the Student will be able to

| CO #        | COURSE OUTCOMES                                                                 |
|-------------|---------------------------------------------------------------------------------|
| CO1         | Relate to Theoretical background and practical knowledge of real-time operating |
|             | systems.                                                                        |
| CO2         | Identify multitasking techniques in real-time systems.                          |
| CO3         | Apply real time scheduling techniques for the given specifications.             |
| CO4         | Analyze real time memory management, I/O management and IPC.                    |
| CO5         | Develop programs for multithreaded applications using suitable Techniques.      |
| <b>CO</b> 6 | Estimate the impact of real time operating systems on application area.         |

## **Course Outcomes to Program Outcomes Articulation Matrix**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| C01 | 2   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO2 | 2   | 3   | 3   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO3 | 2   | 3   | 3   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO4 | 2   | 3   | 3   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| C05 | 2   | 3   | 3   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| C06 | 2   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |

| Module | Contents of Module                                                                                                                                                                                                                                                                      | Hours | COs         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
| 1      | Introduction to Real Time Operating Systems:<br>Multirate Systems, Processes and Threads, Context Switching, Multi tasking,<br>Cooperative Multi-tasking, Pre-emptive Operating Systems structure,<br>Operating system function, Timing requirements on processes, Features of<br>RTOS. | 9     | CO1,<br>CO2 |
| 2      | Real Time Task Scheduling:<br>Process state and scheduling, Clock driven and Event driven<br>scheduling, Rate-Monotonic Scheduling, Earliest-Deadline FirstScheduling,<br>Fault-Tolerant scheduling.                                                                                    | 9     | CO3         |
| 3      | Real-time Memory Management and I/O:<br>Worst case execution time, Intermediate I/O, Shared Memory, ECC Memory,<br>Flash file systems. Multi-resource Services, Blocking, Deadlock and live lock,<br>Critical sections to protect shared resources, Missed deadline, QoS.               | 9     | CO4         |
| 4      | Inter-process Communication: Process and thread creations, Shared<br>Memory Communication, Semaphores, Message-Based Communication,<br>Shared buffer applications involving inter task / thread communication using<br>multiple threads.                                                | 9     | CO4,<br>CO5 |
| 5      | Real-time Kernel: POSIX, Case studies: VxWorks for differentapplication market, Building RTOS image for Target Hardware, Benchmarking RTOS.                                                                                                                                             | 9     | CO6         |

#### **Text Books:**

- 1. Real-Time Embedded Systems and Components, Sam Siewert, 2016, CengageLearning India Edition.
- 2. Real time operating system Book 1-The Theory-Jim Cooling, 2017, Lindentree Associates

#### **Reference Books:**

- 1. Real Times Systems Theory and Practice, Rajib Mall, 2008, Pearson Education India.
- 2. Computers as Components Principles of Embedded Computing System Design, 3<sup>RD</sup> Edition, 2013, Wayne Wolf, Morgan Kaufman
- 3. Real Time System, James W S Liu, 2008, Pearson education.

#### CIE – Continuous Internal Evaluation: Theory (50 Marks)

| Blooms<br>Taxonomy | Tests | Cocurricular-<br>NPTEL |
|--------------------|-------|------------------------|
| Marks (Out of      | 25    | 25                     |
| 50)                |       |                        |
| L1: Remember       | 5     | -                      |
| L2: Understand     | 10    | -                      |
| L3: Apply          | 5     | 5                      |
| L4: Analyze        | 5     | 10                     |
| L5: Evaluate       | -     | 10                     |
| L6: Create         | -     | -                      |

#### SEE – Semester End Examination: Theory (50 Marks)

| Blooms<br>Taxonomy | Marks<br>(Out of 50) |
|--------------------|----------------------|
| L1: Remember       | 10                   |
| L2: Understand     | 20                   |
| L3: Apply          | 10                   |
| L4: Analyze        | 10                   |
| L5: Evaluate       |                      |
| L6: Create         |                      |

#### CYBER CRIME, FORENSICS AND LAW

| Course Code | : CSE745  | Credits : 04  |
|-------------|-----------|---------------|
| L: P: T: S  | : 3:0:0:1 | CIE Marks: 50 |
| Exam Hours  | : 3       | SEE Marks: 50 |

#### COURSE OUTCOMES: At the end of the Course, the Student will be able to

| CO # | COURSE OUTCOMES                                                      |
|------|----------------------------------------------------------------------|
| C01  | Analyze the various types of cybercrimes and cybercriminals.         |
| CO2  | Interpret the importance of tools and methods used in cybersecurity. |
| CO3  | Apply cyber laws to investigate cybercrimes.                         |
| CO4  | Develop solutions to societal problems using forensics techniques.   |
| CO5  | Analyze various cyber forensic investigation tools and methods.      |
| C06  | Evaluate the methods for data recovery and evidence collection.      |

#### **Course Outcomes to Program Outcomes Articulation Matrix**

|     |     | <u> </u> |     |     |     |     |     |     |     |      |      |      |      |      |
|-----|-----|----------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|     | PO1 | PO2      | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| C01 | 3   | 3        | -   | -   | -   | -   | -   | -   | -   | -    | -    | 2    | -    | -    |
| CO2 | 3   | 3        | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 1    | -    |
| CO3 | 3   | 3        | -   | -   | -   | -   | -   | -   | -   | -    | -    | 2    | -    | -    |
| CO4 | 3   | -        | 1   | 2   | -   | 2   | -   | -   | -   | -    | -    | -    | -    | -    |

| CO5 | 3 | 3 | - | - | - | - | - | - | - | - | - | - | - | - |
|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CO6 | 3 | 3 | - | 2 | - | 2 | - | - | - | - | - | - | - | - |

| Module | Module Contents                                                        | Hours | Cos  |
|--------|------------------------------------------------------------------------|-------|------|
| No     |                                                                        |       |      |
| 1      | Introduction to Cybercrime- Cybercrime: Definition and origins of the  | 9     | CO1  |
|        | word, Cybercrime and Information Security, Who are Cybercriminals ?,   |       |      |
|        | Classification of Cybercrimes, Categories of Cybercrime, How criminals |       |      |
|        | plan the Attacks, Social engineering, Cyberstalking, Cybercafe and     |       |      |
|        | Cybercrimes                                                            |       |      |
| 2      | Tools and Methods used in Cybercrime-Proxy Servers and                 | 9     | CO2  |
|        | Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares,     |       |      |
|        | Virus and Worms, Trojan Horses and Backdoors, Steganography, DoS       |       |      |
|        | and DDoS Attacks, SQL injection, Buffer Overflow, Attacks on wireless  |       |      |
|        | Networks, Methods of phishing, Phishing techniques, Spear Phishing,    |       |      |
|        | Types of Phishing Scams, Phishing Toolkits and Spy Phishing, Phishing  |       |      |
|        | countermeasures                                                        |       |      |
| 3      | Cybercrimes and Cybersecurity: The Legal Perspectives – Cybercrime     | 9     | CO3  |
|        | and the Legal Landscape around the world, Why do we need               |       |      |
|        | Cyberlaws: The Indian Context, The Indain IT Act, Challenges to Indian |       |      |
|        | Law and Cybercrime Scenario in India, Consequences of not              |       |      |
|        | addressing the weakness in Information Technology Act, Digital         |       |      |
|        | Signatures and the Indian IT Act, Amendments to the Indian IT Act,     |       |      |
|        | Cybercrime and punishment, Cyberlaw, technology and students:          |       |      |
|        | Indian Scenario.                                                       |       |      |
| 4      | Understanding Computer Forensics-Digital forensics science, The        | 9     | CO5  |
|        | need for Computer Forensics, Cyberforensics and Digital Evidence,      |       |      |
|        | Forensics Analysis of E-mail, Digital Forensics Life cycle, Chain of   |       |      |
|        | custody concept, Network Forensics, Approaching a Computer             |       |      |
|        | Forensics Investigation, Computer Forensics and steganography,         |       |      |
|        | Relevance of the OSI 7 layer model to Computer Forensics, Forensics    |       |      |
|        | and social networking sites, Challenges in computer forensics, special |       |      |
|        | tools and techniques, Antiforensics                                    |       |      |
| 5      | Forensics of Hand-held devices-Understanding Cell phone working        | 9     | СОЗ, |
|        | characteristics, Hand-held devices and digital forensics, Toolkits for |       | CO6  |
|        | Hand-Held device forensics, forensics of iPods and Digital Music       |       |      |
|        | devices, An illustration on real life use of forensics, Techno-Legal   |       |      |
|        | Challenges with Evidence from Hand-held devices, Organizational        |       |      |
|        | Guidelines on Cell phone forensics                                     |       |      |

#### Text Book(s):

1. Cyber Security: Understanding Cyber Crimes, Computer Forensics and LegalPerspectives, by Nina Godbole and Sunit Belapure, Wiley.

#### Reference Book(s):

- 1. Guide to Computer Forensics and Investigations (4<sup>th</sup> edition). By B. Nelson, A. Phillips, F. Enfinger, C. Steuart. ISBN 0-619-21706-5,Thomson, 2009
- 2. Cyber Crime and Cyber Terrorism Investigator's Handbook By Babak Akhgar, Andrew Staniforth, Francesca Bosco. ISBN: 978-0-12-800743-3, Elsevier, 2014
- 3. Websites and indiancyber law by Sai sushanth, Kindle edition, 2015

| Blooms         | Tests | Cocurricular |
|----------------|-------|--------------|
| Taxonomy       |       | - NPTEL      |
| Marks          | 25    | 25           |
| (Out of 50)    |       |              |
| L1: Remember   | 5     | 1            |
| L2: Understand | 10    | 1            |
| L3: Apply      | 5     | 2            |
| L4: Analyze    | 5     | 1            |
| L5: Evaluate   | -     | 10           |
| L6: Create     | -     | 10           |

## CIE – Continuous Internal Evaluation: Theory (50 Marks)

#### SEE – Semester End Examination: Theory (50 Marks)

| Blooms<br>Taxonomy | Marks<br>(Out of 50) |
|--------------------|----------------------|
| L1: Remember       | 10                   |
| L2: Understand     | 10                   |
| L3: Apply          | 10                   |
| L4: Analyze        | 10                   |
| L5: Evaluate       | 10                   |
| L6: Create         | -                    |

#### **INTERNET OF THINGS**

| Course Code | : CSE746   |
|-------------|------------|
| L: P: T: S  | : 3:0:0:1  |
| Exam Hours  | : 04 Hours |

| Credits   | : 04 |
|-----------|------|
| CIE Marks | : 50 |
| SEE Marks | : 50 |

## Course Outcomes: At the end of the Course, the Student will be able to

| CO1 | Interpret the impact and challenges posed by IoT networks leading to new architectural models. |
|-----|------------------------------------------------------------------------------------------------|
| CO2 | Compare and contrast the deployment of smart objects and the technologies to connect           |
|     | them to network.                                                                               |
| CO3 | Appraise the role of IoT protocols for efficient network communication.                        |
| CO4 | Elaborate the need for Data Analytics and Security in IoT.                                     |
| CO5 | Illustrate different sensor technologies for sensing real world entities and identify the      |
|     | applications of IoT in Industry.                                                               |

## Mapping of Course Outcomes to Program Outcomes

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | P08 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 2   | 2   | 1   | -   | -   | 1   | -   | 1   | -   | 1    | -    | 1    | -    | 1    |
| CO2 | 1   | 1   | 1   | -   | -   | 1   | -   | 1   | -   | -    | -    | 1    | -    | 1    |
| CO3 | 1   | 1   | 2   | 1   | -   | 1   | -   | -   | -   | -    | -    | 1    | -    | 1    |
| CO4 | 2   | 1   | 2   | 2   | -   | 1   | -   | -   | -   | -    | -    | 1    | -    | 1    |
| CO5 | 1   | 1   | 2   | -   | 2   | 2   | 2   | -   | 1   | 1    | 2    | 1    | -    | 1    |

| Module | Module Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hours | COs        |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|
| NO     | What is IoT Conosis of IoT IoT and Digitization IoT Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ٥     | <u>(01</u> |
| 1      | Convergence of IT and IoT IoT Challenges IoT Network Architecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9     | COI        |
|        | and Design. Drivers Behind New Network Architectures. Comparing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |            |
|        | IoT Architectures, A Simplified IoT Architecture, The Core IoT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |
|        | Functional Stack, IoT Data Management and Compute Stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |
|        | Smart Objects: The "Things" in IoT, Sensors, Actuators, and Smart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9     | CO2        |
| 2      | Objects, Sensor Networks, Connecting Smart Objects,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |
|        | Communications Criteria, IoT Access Technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |            |
|        | IP as the IoT Network Layer, The Business Case for IP, The need for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9     | CO3        |
| 3      | Optimization, Optimizing IP for IoT, Profiles and Compliances,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |
| · ·    | Application Protocols for IoT, The Transport Layer, IoT Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |            |
|        | Iransport Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •     | 604        |
|        | Data and Analytics for IOI, An Introduction to Data Analytics for IOI,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9     | CO4        |
|        | Strooming Analytics Notwork Analytics Socuring IoT A Brief History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |
| Δ      | of OT Security, Common Challenges in OT Security, How IT and OT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |            |
| -      | Security Practices and Systems Vary Formal Risk Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |
|        | Structures: OCTAVE and FAIR. The Phased Application of Security in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |
|        | an Operational Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |
|        | IoT Physical Devices and Endpoints - Arduino UNO: Introduction to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9     | CO5        |
|        | Arduino, Arduino UNO, Installing the Software, Fundamentals of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |
|        | Arduino Programming IoT Physical Devices and Endpoints -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |
|        | RaspberryPi: Introduction to RaspberryPi, About the RaspberryPi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |            |
|        | Board: Hardware Layout, Operating Systems on RaspberryPi,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |
| 5      | Configuring RaspberryPi, Programming RaspberryPi with Python,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |
| _      | Wireless Temperature Monitoring System Using Pi, DS18B20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |
|        | Temperature Sensor, Connecting Raspberry PI via SSH, Accessing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |
|        | Smort and Connected Cities An IoT Strategy for Smorter Cities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |
|        | Smart City IoT Architecture Smart City Security Architecture Smart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |
|        | City Use-Case Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            |
| 5      | Structures: OCTAVE and FAIR, The Phased Application of Security in<br>an Operational Environment<br>IoT Physical Devices and Endpoints - Arduino UNO: Introduction to<br>Arduino, Arduino UNO, Installing the Software, Fundamentals of<br>Arduino Programming IoT Physical Devices and Endpoints -<br>RaspberryPi: Introduction to RaspberryPi, About the RaspberryPi<br>Board: Hardware Layout, Operating Systems on RaspberryPi,<br>Configuring RaspberryPi, Programming RaspberryPi with Python,<br>Wireless Temperature Monitoring System Using Pi, DS18B20<br>Temperature Sensor, Connecting Raspberry Pi via SSH, Accessing<br>Temperature from DS18B20 sensors, Remote access to RaspberryPi,<br>Smart and Connected Cities, An IoT Strategy for Smarter Cities,<br>Smart City IoT Architecture, Smart City Security Architecture, Smart<br>City Use-Case Examples | 9     | CO5        |

## Text Book(s):

- 1.David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry,"IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things",
- 1<sup>st</sup> Edition, Pearson Education (Cisco Press Indian Reprint). (ISBN: 978-9386873743)
- 2. Srinivasa K G, "Internet of Things", CENGAGE Leaning India, 2017

## **Reference Book(s):**

- 1.Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1<sup>st</sup> Edition, VPT, 2014. (ISBN: 978-8173719547)
- 2. Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill Education, 2017. (ISBN: 978-9352605224)

| Blooms Taxonomy   | Tests | Cocurricular-<br>NPTEL |
|-------------------|-------|------------------------|
| Marks (Out of 50) | 25    | 25                     |
| L1: Remember      |       | -                      |
| L2: Understand    |       | -                      |
| L3: Apply         | 10    | 5                      |
| L4: Analyze       | 5     | 10                     |
| L5: Evaluate      | 5     | 10                     |
| L6: Create        | 5     | -                      |

## CIE – Continuous Internal Evaluation: Theory (50 Marks)

#### SEE – Semester End Examination: Theory (50 Marks)

| Blooms Taxonomy | Marks<br>(Out of 50) |
|-----------------|----------------------|
| L1: Remember    | 5                    |
| L2: Understand  | 5                    |
| L3: Apply       | 15                   |
| L4: Analyze     | 15                   |
| L5: Evaluate    | 5                    |
| L6: Create      | 5                    |

#### **MINI PROJECT**

| Course Code: CSE76   | Credits          | : 2 |
|----------------------|------------------|-----|
| L: P: T: S : 0:2:0:0 | <b>CIE Marks</b> | :25 |
| Exam Hours: 3        | SEE Marks        | :25 |

#### COURSE OUTCOMES: At the end of the Course, the Student will be able to

| CO # | COURSE OUTCOMES                                                                                      |
|------|------------------------------------------------------------------------------------------------------|
| C01  | Identify societal problems and classify under different domains of computer science and engineering. |
| CO2  | Demonstrate the ability to locate and use technical information from multiple sources.               |
| CO3  | Analyze existing literature and formulate the problem statement.                                     |
| CO4  | Formulate an algorithm to solve the problem.                                                         |
| CO5  | Develop models for the proposed system.                                                              |
| C06  | Demonstrate their communication skill effectively with technical presentation.                       |

#### **Course Outcomes to Program Outcomes Articulation Matrix**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| C01 | 3   | -   | -   | -   | -   | 3   | -   | -   | 3   | 3    | 1    | -    | -    | 3    |
| CO2 | 3   | 3   | -   | -   | -   | 3   | -   | -   | 3   | 3    | -    | -    | -    | 3    |
| CO3 | 3   | 3   | -   | -   | -   | 3   | -   | 1   | 3   | 3    | -    | -    | -    | 3    |
| CO4 | 3   | 3   | 2   | -   | 2   | -   | -   | -   | 3   | 3    | -    | 1    | 2    | 3    |
| CO5 | 3   | 3   | 2   | -   | 2   | -   | -   | -   | 3   | 3    | -    | -    | 2    | 3    |
| C06 | -   | -   | -   | -   | -   | -   | -   | -   | 3   | 3    | -    | -    | -    | 3    |

The student shall be capable of identifying a problem related to the field of Computer Science and Engineering and carry out a mini project on the problem defined. Each student is expected to do the

mini project individually. The code developed towards the project will be reviewed by a panel of experts during the course of the semester. Plagiarized projects will automatically get an **"F" GRADE** and the student will be liable for further disciplinary action. At the completion of a project the student will submit a project report, which will be evaluated by duly appointed examiner(s).

## **Evaluation Stages:**

| Activity               | Evaluation Attribute                                                |
|------------------------|---------------------------------------------------------------------|
| Synopsis<br>Submission | Problem Statement                                                   |
| Review-I               | Algorithm of the project and outline design of project              |
| Review-II              | Partial code development and or partial execution                   |
| Review-III             | Final Implementation PPT(10-12 slides)<br>+<br>Results verification |
|                        | Report Submission in defined format                                 |

#### Sample Mini Projects (Mobile based Applications):

- 1) Pizza Delivery
- 2) GPS based Search
- 3) Hospital Management
- 4) Billing Management system
- 5) Interdisciplinary application

## **CIE - Continuous Internal Evaluation (25 Marks)**

| Bloom's Taxonomy  | Mini Project |
|-------------------|--------------|
| Marks (Out of 25) |              |
| Remember          |              |
| Understand        | 5            |
| Apply             | 5            |
| Analyze           | 5            |
| Evaluate          | 5            |
| Create            | 5            |

#### SEE – Semester End Examination (25 marks)

| Bloom's    | Mini Project |
|------------|--------------|
| Taxonomy   |              |
| Remember   | -            |
| Understand | 5            |
| Apply      | 5            |
| Analyze    | 5            |
| Evaluate   | 5            |
| Create     | 5            |

**Course Code: CSE77** L: P: T: S : 0:4:0:0 Exam Hours :3

#### Credits :4 **CIE Marks** : 50 **SEE Marks** : 50

#### COURSE OUTCOMES: At the end of the Course, the Student will be able to

| CO # | COURSE OUTCOMES                                                                                      |
|------|------------------------------------------------------------------------------------------------------|
| C01  | Identify societal problems and classify under different domains of computer science and engineering. |
| CO2  | Demonstrate the ability to locate and use technical information from multiple sources.               |
| CO3  | Analyze existing literature and formulate the problem statement.                                     |
| CO4  | Formulate an algorithm to solve the problem.                                                         |
| CO5  | Develop models for the proposed system.                                                              |
| CO6  | Demonstrate their communication skill effectively with technical presentation.                       |

#### **Course Outcomes to Program Outcomes Articulation Matrix**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| C01 | 3   | -   | -   | -   | -   | 3   | -   | -   | 3   | 3    | 1    | -    | -    | 3    |
| CO2 | 3   | 3   | -   | -   | -   | 3   | -   | -   | 3   | 3    | -    | -    | -    | 3    |
| CO3 | 3   | 3   | -   | -   | -   | 3   | -   | 1   | 3   | 3    | -    | -    | -    | 3    |
| CO4 | 3   | 3   | 2   | -   | 2   | -   | -   | -   | 3   | 3    | -    | 1    | 2    | 3    |
| CO5 | 3   | 3   | 2   | -   | 2   | -   | -   | -   | 3   | 3    | -    | -    | 2    | 3    |
| C06 | -   | -   | -   | -   | -   | -   | -   | -   | 3   | 3    | -    | -    | -    | 3    |

This course will be conducted largely as group of 1-3 students members under the direct supervision of a member of academic staff. Students will be required to

- 1) Identify the Problem and choose the specific project topic which will reflect the commoninterests and expertise of the student and supervisor.
- 2) Perform a literature search to review current knowledge and developments in the chosentechnical area.
- Conduct a Feasibility study of the Project.
   Submit the main Project Proposal.

#### **CIE - Continuous Internal Evaluation (50 Marks)**

| Bloom's Taxonomy  | Project |
|-------------------|---------|
| Marks (Out of 50) | -       |
| Remember          | -       |
| Understand        | 10      |
| Apply             | 10      |
| Analyze           | 10      |
| Evaluate          | 10      |
| Create            | 10      |

#### SEE – Semester End Examination (50 marks)

| Bloom's Taxonomy  | Project |
|-------------------|---------|
| Marks (Out of 50) | -       |
| Remember          | -       |
| Understand        | 10      |
| Apply             | 10      |
| Analyze           | 10      |
| Evaluate          | 10      |
| Create            | 10      |

# **EIGHTH SEMESTER SYLLABUS**

#### **CSE81 - OBJECT ORIENTED ANALYSIS AND DESIGN**

Course Code: CSE81Credits: 05L:P:T:S: 3:0:1:1CIE Marks : 50Exam Hours: 3 HrsSEE Marks : 50

### COURSE OUTCOMES: At the end of the Course, the Student will be able to

| CO # | COURSE OUTCOMES                                                                                                      |
|------|----------------------------------------------------------------------------------------------------------------------|
| CO1  | Analyze the importance of Object Oriented Development and UML models in software development life cycle.             |
| CO2  | Analyze the business requirements; transform them into design specific layout using use case and interaction models. |
| CO3  | Apply the unified modeling language notations to develop the system designs.                                         |
| CO4  | Design interaction diagrams for modeling the dynamic aspects of a software system.                                   |
| CO5  | Develop the models for implementation, testing and deployment.                                                       |
| CO6  | Explain the current trends in system development.                                                                    |

## Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | -   | -   | -   | -   | -          | -   | -   | -    | -    | -    | -    | -    |
| CO2 | 3   | 3   | 3   | 3   | -   | -   | -          | -   | -   | 3    | -    | 1    | -    | 3    |
| CO3 | 3   | 3   | 3   | 3   | 3   | -   | -          | -   | -   | 3    | -    | -    | -    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | -   | -          | -   | -   | 3    | -    | -    | 2    | 3    |
| CO5 | 3   | 3   | 3   | 3   | 3   | -   | -          | -   | -   | 3    | -    | -    | 2    | -    |
| CO6 | 3   | -   | -   | -   | -   | -   | -          | -   | -   | 3    | -    | -    | 2    | -    |

| Module<br>No | Module Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hours | COs |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| 1            | <ul> <li>Object oriented Development and Modeling</li> <li>Object-oriented Development and the Unified Process Overview, The</li> <li>System Development Life Cycle, Methodologies, Models, Tools and</li> <li>Techniques, The Unified Process as a System Development Methodology, The</li> <li>UP Disciplines, Overview of Object-oriented concepts, tools to support</li> <li>Systems Development, Case studies.</li> <li>Modeling and the Requirements Discipline</li> <li>Overview, The Requirements discipline in more detail, System requirements,</li> <li>Models and Modeling, Techniques for Information Gathering, Validating the</li> <li>requirements, Case studies.</li> </ul> | 9     | C01 |

| 2 | <ul> <li>Use Cases, Domain Classes and Use Case Modeling Use Cases and<br/>Domain Classes</li> <li>Overview, Events and Use Cases, Problem Domain Classes, The Class Diagram,<br/>Locations and the CRUID Matrix, Use Cases, Domain Model and Iteration<br/>Planning, Case Studies.</li> <li>Use Case Modeling and Detailed Requirements</li> <li>Overview, Detailed Object-oriented Requirements Definitions, System<br/>Processes- A Use Case/ Scenario View, Identifying Inputs and Outputs- The<br/>System Sequence Diagram, Identifying object Behavior- The State chart<br/>Diagram, Integrating Object-Oriented Models, Case Studies.</li> </ul> | 9  | CO2         |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|
| 3 | <b>Design Activities and Environments</b><br>Overview, Moving from Business Modeling to Requirements to design,<br>Understanding the Elements of Design, Design Discipline Activities, Project<br>Management- Coordinating the Project, Deployment Environment, Software<br>Architecture, Network Design, Case studies.                                                                                                                                                                                                                                                                                                                                 | 9  | CO3         |
| 4 | Use Case Realization<br>Overview, Object- Oriented Design –The Bridge between Requirements and<br>Implementation, Design Classes and Design Class Diagrams, Interaction<br>Diagrams – Realizing Use Cases and Defining Methods, Designing with<br>Communication Diagrams, Updating the Design Class Diagram, Package<br>Diagrams – Structuring the Major Components, Implementation Issues for<br>Three-Layer Design, Case Studies.                                                                                                                                                                                                                     | 8  | CO4         |
| 5 | Implementation, Testing and Deployment Disciplines Making theSystem OperationalOverview, Implementation, Testing, Configuration and Change Management,Deployment, Planning and Managing Implementation, Testing, andDeployment, Case Studies.Current Trends in System DevelopmentOverview, Software Principles and Practices, Adaptive Approaches toDevelopment, Model-Driven Architecture – Generalizing Solutions,Frameworks and Components, Case Studies.Legacy SystemReverse Engineering, Building the interaction model, Building the class model,<br>Building the state model, Wrapping, Maintenance.                                             | 10 | CO5,<br>CO6 |

#### Text Book(s):

1. John W. Satzinger, Robert B. Jackson, Stephen D. Burd, Object-Oriented Analysis and Design with the Unified Process, Cengage Learning.

2. Michael Blaha, James Rumbaugh, Object Oriented Modeling and design with UML, 2<sup>nd</sup> edition, Pearson education, 2005.

#### **Reference Book(s):**

- 1. Practical Object oriented Design with UML- Mark Priestley, 2<sup>nd</sup> edition, Tata McGraw- Hill, 2003
- 2. The Unified Modeling Language User Guide- Grady Booch, James Rumbaugh and Ivar Jacobson, 2<sup>nd</sup> edition, Pearson, 2005.
- 3. Object-Oriented Systems Analysis and Design Using UML- Simon Bennett, Steve McRobb and Ray farmer, 2<sup>nd</sup> Edition, Tata McGraw-Hill, 2002.

#### SELF STUDY

The student shall identify an emerging topic related to Object Oriented Analysis and Design to carry out a self-study on the problem defined. Topic should be socially relevant and research oriented ones. On the completion student will submit a report, which will be evaluated.

| Blooms Taxonomy   | Tests | Assignments | Quizzes | Self Study |
|-------------------|-------|-------------|---------|------------|
| Marks (Out of 50) | 25    | 10          | 05      | 10         |
| L1: Remember      | 2     | -           | -       | -          |
| L2: Understand    | 2     | 5           | -       | -          |
| L3: Apply         | 10    | 5           | -       | 10         |
| L4: Analyze       | 7     | -           | -       | -          |
| L5: Evaluate      | 2     | -           | _       | -          |
| L6: Create        | 2     | -           | 5       | -          |

#### CIE – Continuous Internal Evaluation: Theory (50 Marks)

#### SEE – Semester End Examination: Theory (50 Marks)

| <b>Blooms Taxonomy</b> | Marks (Out of 50) |
|------------------------|-------------------|
| L1: Remember           | -                 |
| L2: Understand         | 10                |
| L3: Apply              | 10                |
| L4: Analyze            | 10                |
| L5: Evaluate           | 10                |
| L6: Create             | 10                |

#### DATA MINING AND MACHINE LEARNING

| Code : CSE82      | Credits   | :04  |
|-------------------|-----------|------|
| L:P:T:S: 3:0:0:1  | CIE Marks | : 50 |
| Exam Hours: 3 Hrs | SEE Marks | : 50 |

#### COURSE OUTCOMES: At the end of the Course, the Student will be able to

| CO # | COURSE OUTCOMES                                                                                                         |
|------|-------------------------------------------------------------------------------------------------------------------------|
| C01  | Identify various data mining principles and techniques with different applications.                                     |
| CO2  | Apply pre-processing and association rule mining techniques for large data.                                             |
| CO3  | Create clusters using different clustering techniques for performing real-time analysis on common societal data.        |
| CO4  | Classify large dataset into different groups by applying various classification techniques.                             |
| C05  | Categorize different learning techniques and propose solutions to various real time and social impact problems.         |
| CO6  | Make use of neural network and genetic algorithms to investigate and solve problems from different engineering sectors. |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| C01 | 3   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    | -    | 3    |
| CO2 | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | 3    |
| CO3 | 3   | 3   | 3   | -   | -   | 2   | -   | -   | -   | -    | -    | -    | -    | 3    |
| CO4 | 3   | 3   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    | 3    |
| CO5 | 3   | 3   | 3   | -   | -   | 2   | -   | -   | -   | -    | -    | -    | -    | 3    |
| C06 | 3   | 3   | 3   | 1   | -   | -   | -   | -   | -   | -    | -    | -    | -    | 3    |

#### **Course Outcomes to Program Outcomes Articulation Matrix**

| Module<br>No | Module Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hours | Cos     |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|
| 1            | <b>Introduction:</b> What is Data, Data-Types, What is data mining, Why Data Mining, What kinds of data can be mined, What kinds of patterns can be mined, Which Technologies Are used, Which kinds of Applications are targeted, Major issues in data mining.                                                                                                                                                                                                     | 8     | C01     |
| 2            | <b>Data Pre-processing:</b> An overview, Data cleaning, Data integration,<br>Data reduction, Data transformation and data discretization.<br><b>Mining Frequent Patterns, Associations and Correlations:</b><br>Basic Concepts, Confidence and support, Apriori algorithm, FP<br>Growth Algorithm.                                                                                                                                                                 | 10    | CO2     |
| 3            | <b>Classification:</b> Basic Concepts, Decision tree induction, Bayes<br>Classification, Rule-Based classification.<br><b>Cluster Analysis:</b> Requirements for cluster analysis, overview of basic<br>clustering methods, K-means, k-medoids Algorithms.                                                                                                                                                                                                         | 10    | CO3,CO4 |
| 4            | <ul> <li>Introduction to Machine Learning: What is Machine Learning, difference between supervised and unsupervised learning techniques?</li> <li>Concept Learning And Decision Learning: Learning Problems, Designing Learning systems, Perspectives and Issues.</li> <li>Concept Learning: Find-S-finding a maximally specific hypothesis-Version Spaces and Candidate Elimination Algorithm.</li> <li>Decision Learning: ID3, CART, C4.5 Algorithms.</li> </ul> | 9     | CO5     |
| 5            | Artificial Neural networks: Neural Network representation,<br>Perceptrons, Multi Layer networks and the Back propagation<br>Algorithm and problems.<br>Genetic algorithms: Motivation, Representing hypotheses,<br>Genetic operators, Fitness function and selection, An illustrative<br>example.                                                                                                                                                                  | 8     | CO6     |

#### Text Book(s):

- 1. Data Mining Concepts & Techniques by Jaiwei Han , Micheline Kamber, Jian Pei 3<sup>rd</sup> Edition, MK publisher.
- 2. Machine Learning-by Tom M.Mitchell ,Mc Graw Hill Education ,2013.

#### **Reference Book(s):**

- 1. Discovering Knowledge in Data: An introduction to Data Mining, Daniel T. Larose, John Wiley, 2nd Edition, 2014
- 2. Introduction to Machine Learning-Ethem Alpaydin,3<sup>rd</sup> Edition,PHI publications.
- 3. G. K. Gupta "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006

## CIE – Continuous Internal Evaluation: Theory (50 Marks)

| Blooms<br>Taxonomy | Tests | Assignments | Quizzes | Self Study |
|--------------------|-------|-------------|---------|------------|
| Marks (Out of      | 25    | 10          | 05      | 10         |
| 50)                |       |             |         |            |
| L1: Remember       | 5     | -           | -       |            |
| L2: Understand     | 5     | -           | -       | 5          |
| L3: Apply          | 5     | 5           | 2.5     | 5          |
| L4: Analyze        | 5     | 5           | 2.5     |            |
| L5: Evaluate       | 5     | -           | -       |            |
| L6: Create         | -     | -           | -       |            |

## SEE – Semester End Examination: Theory (50 Marks)

| Blooms<br>Taxonomy | Marks<br>(Out of 50) |
|--------------------|----------------------|
| L1: Remember       | 10                   |
| L2: Understand     | 10                   |
| L3: Apply          | 10                   |
| L4: Analyze        | 10                   |
| L5: Evaluate       | 10                   |
| L6: Create         | -                    |

#### **INTERNSHIP**

| Course Code | : CSE83    | Credits   | : 16 |
|-------------|------------|-----------|------|
| L: P: T: S  | : 0:16:0:0 | CIE Marks | : 50 |
| Exam Hours  | : 3        | SEE Marks | : 50 |

### COURSE OUTCOMES: At the end of the Course, the Student will be able to

| CO # | COURSE OUTCOMES                                                                   |
|------|-----------------------------------------------------------------------------------|
| CO1  | Make use of theoretical background and knowledge of current trend in technologies |
| CO2  | Identify techniques to work and gain knowledge                                    |
| CO3  | Develop the skills in designing and learn to do coding for application.           |
| CO4  | Analyze real time working and developing code for the projects                    |
| CO5  | Demonstrate working of code using suitable platform.                              |
| CO6  | Demonstrate their communication skill effectively with technical presentation.    |

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | P07 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | -   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 2    | -    | 1    |
| CO2 | 3   | 3   | -   | 2   | -   | -   | -   | -   | -   | -    | -    | -    | -    | -    |
| CO3 | 3   | 3   | 2   | -   | -   | -   | -   | 2   | 3   | -    | -    | 2    | 3    | -    |
| CO4 | 3   | 3   | 2   | 2   | -   | -   | -   | 2   | 3   | -    | -    | -    | -    | -    |
| CO5 | 3   | -   | -   | -   | -   | -   | -   | -   | 3   | 2    | -    | -    | 3    | -    |
| CO6 | -   | -   | -   | -   | -   | -   | -   | -   | 3   | 2    | -    | -    | 3    | -    |

#### **Course Outcomes to Program Outcomes Articulation Matrix**

This course will be conducted individual student under the direct supervision of a member of academic staff. The specific project topic undertaken will reflect the common interests and expertise of the student and supervisor. Students will be required to

- 1) Undertake the detailed technical work in the chosen area.
- 2) Design the Architecture of the System
- 3) Produce progress reports or maintain a professional journal to establish work completed, and to schedule additional work within the time frame specified for the project.
- 4) Prepare an interim report describing the work undertaken and results obtained sofar
- 5) Demonstrate the Complete working of the Project with results of all modules.
- 6) Present the work in a forum involving poster presentations and demonstrations of operational hardware and software.

#### **CIE - Continuous Internal Evaluation (50 Marks)**

| Bloom's Taxonomy  | Project |  |  |
|-------------------|---------|--|--|
| Marks (Out of 50) |         |  |  |
| Remember          |         |  |  |
| Understand        | 10      |  |  |
| Apply             | 10      |  |  |
| Analyze           | 10      |  |  |
| Evaluate          | 10      |  |  |
| Create            | 10      |  |  |

#### SEE – Semester End Examination (50 marks)

| Bloom's Taxonomy  | Project |  |  |
|-------------------|---------|--|--|
| Marks (Out of 50) |         |  |  |
| Remember          |         |  |  |
| Understand        | 10      |  |  |
| Apply             | 10      |  |  |
| Analyze           | 10      |  |  |
| Evaluate          | 10      |  |  |
| Create            | 10      |  |  |

#### **PROJECT PHASE-2**

Course Code: CSE84 L: P: T: S : 0:12:0:0 Exam Hours : 03 Credits: 12 CIE Marks :50 SEE Marks: 50

#### COURSE OUTCOMES: At the end of the Course, the Student will be able to

| CO #       | COURSE OUTCOMES                                                                                    |
|------------|----------------------------------------------------------------------------------------------------|
| C01        | Review the literature and develop solutions for framed problem statement.                          |
| CO2        | Apply different software development process models in design and development of the project.      |
| CO3        | Use latest technologies and tools in implementing software package system for identified problems. |
| <b>CO4</b> | Test and evaluate the performance and functionality of the modules planned.                        |
| CO5        | Demonstrate working model of the developed solution.                                               |
| CO6        | Demonstrate their communication skill effectively with technical presentation.                     |

#### **Course Outcomes to Program Outcomes Articulation Matrix**

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1 | 3   | 3   | 3   | -   | -   | 1   | 1   | 3   | 3   | 3    | 2    | 3    | 3    | 3    |
| CO2 | 3   | 3   | 3   | 3   | 3   | -   | -   | 3   | 3   | 3    | -    | 3    | 3    | 3    |
| CO3 | 3   | -   | 3   | 3   | 3   | -   | -   | 3   | 3   | 3    | 2    | 3    | 3    | 3    |
| CO4 | 3   | 3   | 3   | 3   | 3   | -   | -   | -   | 3   | 3    | -    | 3    | 3    | 3    |
| CO5 | 3   | -   | -   | -   | -   | -   | -   | -   | 3   | 3    | -    | -    | -    | 3    |
| CO6 | -   | -   | -   | -   | -   | -   | -   | -   | 3   | 3    | -    | -    | -    | 3    |

This course will be conducted largely as group of 1-3 student members under the direct supervision of a member of academic staff. The specific project topic undertaken will reflect the common interests and expertise of the student and supervisor. Students will be required to

- 1. Undertake the detailed technical work in the chosen area.
- 2. Design the Architecture of the System
- 3. Produce progress reports or maintain a professional journal to establish work completed, and to schedule additional work within the time frame specified for the project.
- 4. Prepare an interim report describing the work undertaken and results obtained so far
- 5. Demonstrate the Complete working of the Project with results of all modules.
- 6. Present the work in a forum involving poster presentations and demonstrations of operational hardware and software.

| <b>CIE - Continuous</b> | Internal | Evaluation | (50 Marks) |  |
|-------------------------|----------|------------|------------|--|
|-------------------------|----------|------------|------------|--|

| Bloom's Taxonomy  | Project |  |  |
|-------------------|---------|--|--|
| Marks (Out of 50) |         |  |  |
| Remember          | -       |  |  |
| Understand        | 05      |  |  |
| Apply             | 10      |  |  |
| Analyze           | 10      |  |  |
| Evaluate          | 10      |  |  |
| Create            | 15      |  |  |

# SEE – Semester End Examination (50 marks)

| Bloom's Taxonomy  | Project |  |  |
|-------------------|---------|--|--|
| Marks (Out of 50) |         |  |  |
| Remember          | -       |  |  |
| Understand        | 05      |  |  |
| Apply             | 10      |  |  |
| Analyze           | 10      |  |  |
| Evaluate          | 10      |  |  |

## **APPENDIX A**

## **Outcome Based Education**

**Outcome-based education** (OBE) is an educational theory that bases each part of an educational system around goals (outcomes). By the end of the educational experience each student should have achieved the goal. There is no specified style of teaching or assessment in OBE; instead classes, opportunities, and assessments should all help students achieve the specified outcomes.

There are three educational Outcomes as defined by the National Board of Accreditation:

**Program Educational Objectives:** The Educational objectives of an engineering degree program are the statements that describe the expected achievements of graduate in their career and also in particular what the graduates are expected to perform and achieve during the first few years after graduation. [nbaindia.org]

**Program Outcomes:** What the student would demonstrate upon graduation. Graduate attributes are separately listed in Appendix C

**Course Outcome:** The specific outcome/s of each course/subject that is a part of the program curriculum. Each subject/course is expected to have a set of Course Outcomes



## **APPENDIX B**

## The Graduate Attributes of NBA

**Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

**Problem analysis**: Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

**Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

**Conduct investigations of complex problems**: The problems that cannot be solved by straightforward application of knowledge, theories and techniques applicable to the engineering discipline that may not have a unique solution. For example, a design problem can be solved in many ways and lead to multiple possible solutions that require consideration of appropriate constraints/requirements not explicitly given in the problem statement (like: cost, power requirement, durability, product life, etc.) which need to be defined (modeled) within appropriate mathematical framework that often require use of modern computational concepts and tools.

**Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

**The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

**Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

**Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

**Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

**Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

**Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

**Life-long learning**: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

## **APPENDIX C**

## **BLOOM'S TAXONOMY**

**Bloom's taxonomy** is a classification system used to define and distinguish different levels of human cognition—i.e., thinking, learning, and understanding. Educators have typically used Bloom's taxonomy to inform or guide the development of assessments (tests and other evaluations of student learning), curriculum (units, lessons, projects, and other learning activities), and instructional methods such as questioning strategies. **[eduglosarry.org]** 

